Zukunft aus Ihren Daten
Unsere IT-Berater
verstehen Ihre Strategie

Kontaktformular

Haben Sie Fragen zu unseren Leistungen oder Lösungsangeboten? Sehr gerne vereinbaren wir mit Ihnen einen Kennenlern-Termin.

Bitte schreiben Sie uns in wenigen Zeilen, was Ihr Anliegen ist. Wir rufen Sie zeitnah zurück.

* Pflichtfelder

Ihre Nachricht wurde erfolgreich übermittelt. In Kürze wird sich ein Mitarbeiter via E-Mail bei Ihnen melden.
Ihre Nachricht konnte nicht übermittelt werden. Bitte prüfen Sie Ihre Eingaben.

Business-Case: Digitales Hilfsmittel für die Agrarwirtschaft

Chemieprodukte mit Natural Language Processing klassifizieren

Hunderte Pestizide, Düngemittel und Anforderungen: Die moderne Landwirtschaft ist ein komplexes System. Chemieprodukte umweltgerecht und wirksam einzusetzen – abhängig von Ackergröße, Produkt und Wetter –, ist kein leichtes Unterfangen. Was, wenn es dafür eine App gäbe? Unterstützung bietet die KI.

© pfatterüberalles(@flickr): TraktorLizenz CC BY 2.0

Den Traktor fährt der Bauer eigenhändig. In anderen Bereichen sind intelligente Softwarelösungen sehr willkommen. 

Bio muss Bio bleiben, Winterroggen anders behandelt werden als Sommerroggen. Und damit hören die gesetzlichen und agrarwirtschaftlichen Anforderungen an die Landwirtschaft nicht auf. Je nachdem, welche Wetterbedingungen vorherrschen, wie groß der Acker und wie weit er zum nächsten Feld entfernt ist und was darauf gepflanzt wird, muss ein Landwirt unterschiedliche Substanzen einsetzen. Ein großer Chemiekonzern hat hunderte davon in seiner Produktpalette – für jedes Anwendungsszenario das Passende. Doch wie können seine Kunden den Überblick behalten und die richtige Wahl treffen? Die Antwort: Mit einem leicht zu bedienenden, digitalen Hilfsmittel, das bei der Auswahl von Düngern und Pestiziden assistiert – einer App undgleichzeitig einen bedarfsgerechten Vertrieb der Produkte ermöglicht.

Das ist unser Beitrag

Wir haben den Chemiekonzern bei der Entwicklung dereiner Handy-Applikation unterstützt: Anhand der Produktdatenblätter konnten wir die Datengrundlage geschaffen, indem wir mit NLP-gestützten Methoden wie Entity Recognition und Rule-Based Parsing Anwendungskriterien der vielen unterschiedlichen Chemikalien extrahiert haben. Die anschließende automatische Klassifizierung hat schnell ersichtlich gemacht, welches Produkt für welche Jahreszeit, welches Agrarprodukt und welchen Ackertyp geeignet ist.

Das Projekt auf einen Blick

Projekttitel:

  • Extraktion von Anwendungsvorschriften für den praktischen Einsatz in der Agrarproduktion

Branche:

  • Chemie/Agrarwirtschaft

Laufzeit:

  • Sieben Monate

Unser Beitrag:

  • Beratung
  • Projektanalyse
  • Entwicklung und technische Implementierung der Parser-Anforderungen (Grundlage: ca. 500 Produktbeschreibungen)
  • Testing

Technologien:

  • Python
  • Azure